# permutation and uniqueness of determinant

California Healthy Aging Initiative

## permutation and uniqueness of determinant

0.532 0 TD 0 Tc )]TJ 0.9034 -1.4153 TD 0.0015 Tc 0.5922 0 TD 33 0 obj (. /F3 1 Tf 0.0011 Tc 0.0016 Tc ()Tj 0.0022 Tc 2.7703 0 TD 1.0138 -1.4153 TD [(for)-321.5(w)4.9(hic)34(h)]TJ 0 Tc Thus from the formula above we obtain the standard formula for the determinant of a $2 \times 2$ matrix: (3) An inverse permutation is a permutation which you will get by inserting position of an element at the position specified by the element value in the array. -24.5315 -2.6198 TD [(i,)-172.5(j)]TJ ()Tj /F7 1 Tf ()Tj 1.7766 0 TD ()Tj )-491.3($$Ident)5.5(it)5.5(y)-346.4(E)2.7(lement)-335.8(for)-348.6(C)-0.9(omp)50(o)-0.2(sit)5.5(i)0.6(on$$)-331(G)5.6(iven)-341.6(any)-346.4(p)50(ermut)5.5(a)-0.2(t)5.5(i)0.6(on)]TJ /F3 6 0 R 0.7327 -0.793 TD /F6 1 Tf 11.9552 0 0 11.9552 226.44 431.58 Tm ()Tj 2.0878 0 TD Example : next_permutations in C++ / … /F3 1 Tf ... evaluated on a permutation ˇis ( 1)t where tis the number of adjacent transpositions used to express ˇin terms of adjacent permutations. 0.5922 0 TD /F13 1 Tf 11.9552 0 0 11.9552 222.12 258.66 Tm 1.3.5 The Determinant Of A Square Matrix In section 1.3.4 we have seen that the condition of existence and uniqueness for solutions to A x = b involves whether KA = 0, i.e. /F10 1 Tf stream 0 Tc 0 -1.2145 TD )Tj /F5 1 Tf ()Tj 0 Tc 0.3814 0 TD -0.6826 -1.2145 TD 1.0138 -1.4053 TD 3. 3.1317 2.0075 TD 20.0546 0 TD /F3 1 Tf /F5 1 Tf 0 Tc (n)Tj /F3 1 Tf ($$3$$)Tj /F6 1 Tf 0.7227 0 TD 0.0013 Tc /F3 1 Tf ()Tj [($$1$$\))-270.7(=)]TJ 1.0138 -1.4153 TD (S)Tj 0.0015 Tc /F3 1 Tf )283.3(,)]TJ ")a 1"1 a 2"2!! /F9 1 Tf Uniqueness and more Uniqueness The main theorem we are after: Theorem 1 The determinant of and n nmatrix Ais the unique n-linear, alternating function from F n to F that takes the identity to 1. 7.9701 0 0 7.9701 390.96 669.3 Tm endobj Answer To get a nonzero term in the permutation expansion we must use the 1 , 2 {\displaystyle 1,2} entry and the 4 , 3 {\displaystyle 4,3} entry. /F3 1 Tf (,)Tj /F5 1 Tf /F3 1 Tf 0.3814 0 TD If two rows of a matrix are equal, its determinant is zero. 0.7428 -0.793 TD ()Tj /F3 1 Tf Remark. -0.0006 Tc 1.355 0 TD 0.8354 Tc 3.0614 0 TD << /F3 1 Tf /F13 1 Tf (S)Tj /F3 1 Tf -0.0028 Tc ()Tj 1.0138 -1.4053 TD /F3 1 Tf 0.5922 0 TD 0 -1.2145 TD 0.8253 Tc /F5 1 Tf 0 -1.2145 TD -30.0623 -1.2045 TD 1.4454 0 TD /F3 1 Tf 0.8632 0 TD (123)Tj 0.0015 Tc determinant of A to be the scalar detA=! ()Tj /F3 1 Tf -18.0474 -2.2082 TD /F6 1 Tf 11.9552 0 0 11.9552 291.84 143.46 Tm /F14 29 0 R /F10 1 Tf "#S n (sgn! ()Tj (n)Tj /F8 1 Tf 27.6729 0 TD -0.7829 -1.2145 TD /F5 1 Tf ()Tj /F10 1 Tf (+)Tj [(that)-321.4(are)-327.3(o)-1.9(ut)-321.4(of)-322.7(orde)4(r)-331.5(r)-0.2(e)4(l)1.4(ativ)35.4(e)-337.3(t)-0.2(o)-323.1(e)4(ac)34.1(h)-338.9(o)-1.9(the)4(r)-0.2(. /F3 1 Tf /F13 1 Tf (for)Tj )-521.6(T)4(hen)-360(a)-2.9(n)]TJ 2.4113 Tc -28.7976 -1.2045 TD /F3 1 Tf 0 Tc 0.0004 Tc )Tj 0.7327 -0.793 TD /F5 1 Tf )]TJ 0 Tc 0 Tc /F10 1 Tf You can specify conditions of storing and accessing cookies in your browser. ()Tj /F3 1 Tf ()Tj 6.4038 0 TD /F3 1 Tf under a permutation of columns it changes the sign according to the parity of the permutation. ()Tj /F3 1 Tf 3.1317 2.0075 TD /F10 1 Tf ()Tj /F9 1 Tf 7.9701 0 0 7.9701 184.8 147.78 Tm /F5 1 Tf [(,)-132.9()61.4(,)-132.9()]TJ 0.9435 0 TD A permutation matrix is a square matrix that only has 0’s and 1’s as its entries with exactly one 1 in each row and column. /F13 1 Tf 4.3261 0 TD /F5 1 Tf /F5 1 Tf )-441.1(In)-309.6(particular,)]TJ 0 Tc /F5 1 Tf 0.0012 Tc 0.2768 Tc 0.7227 1.4052 TD [(=i)283.3(d)284.3(.)-158.4(E)286(.)283.3(g)280(. 0 Tc 0.001 Tc 11.9552 0 0 11.9552 296.88 643.7401 Tm -25.3543 -1.2045 TD 0 Tc 0.0015 Tc (123)Tj -0.0006 Tc )Tj 0 Tc While reading through Modern Quantum Chemistry by Szabo and Ostlund I came across an equation (1.38) to calculate the determinant of a matrix by permuting the column indices of the matrix elements,. /F5 1 Tf ()Tj 0.0015 Tc 0 Tc 2.1804 Tc 1.4153 -0.793 TD 1.0439 1.4052 TD ($$)Tj -0.0005 Tc 2.0878 0 TD ()Tj ()Tj 1.0138 -1.4052 TD 0.9636 -1.4153 TD 0.3814 0 TD 0 Tc 38.654 0 TD /F4 1 Tf 3.1317 2.0075 TD /F5 1 Tf ()Tj (\(3$$)Tj 0.7428 -0.793 TD The permutation s from before is even. [(unc)33.1(hanged. 0.0003 Tc ()Tj 0.8281 0 TD 0.5922 0 TD ()Tj ($$3$$)Tj /F8 1 Tf -13.6207 -1.6562 TD 7.9701 0 0 7.9701 321.36 467.82 Tm (123)Tj [(23)-10.1(1)]TJ 0.0012 Tc 0 Tc 0.0003 Tc Uniqueness and other properties If two columns of a matrix are interchanged the value of the determinant is multiplied by 1. And we prove this formula with the fact that the determinant of a matrix is a multi-linear alternating form, meaning that if we permute the columns or lines of a matrix, its determinant is the same times the signature of the permutation. 0 Tc [(i,)-172.5(j)]TJ ()Tj -23.9896 -2.6198 TD [(1. 1.0439 0 TD (1)Tj To use this result, we need a method by which we can examine the elements of A to determine if KA = 0. 0.5922 0 TD [(Ex)5.8(a)9.2(m)8.3(p)7(l)5.6(e)-385.8(3)4.7(.)5.6(1)4.7(. 11.9552 0 0 11.9552 72 707.9401 Tm (=)Tj (n)Tj ()Tj 0 Tc [(Theorem)-277.6(3)-0.2(.2. 1.0138 -1.4052 TD 0.0015 Tc ()Tj ()Tj 0.5922 -2.2083 TD 0.5922 0 TD /F5 1 Tf /F3 1 Tf ()Tj )Tj (\))Tj [(12)-10(3)]TJ 0 Tc ()Tj -0.0028 Tc 1.9071 0 TD The symbol is called after the Italian mathematician Tullio Levi-Civita (1873–1941), who introduced it and made heavy use of it in his work on tensor calculus (Absolute Differential Calculus). 0.4909 Tc 0 Tc 0 Tc >> 0.7227 0 TD 0 g (231)Tj /F13 1 Tf 0.5922 0 TD 0.5922 0 TD 0 Tc [(suc)30.3(h)-342.7(a)-5.7(s)]TJ 0 -1.2045 TD 0.7227 0 TD 2.951 0 TD [(suc)30.3(h)-342.7(t)-4(h)-1.4(a)-5.7(t)]TJ 1.0439 1.4053 TD [(\)$$3$$)-270.4(=)]TJ (No general discussion of permutations). 0.4909 Tc 0.0015 Tc Proof of existence by induction. /F10 1 Tf 0.5922 0 TD /F3 1 Tf /F3 1 Tf 20.8576 0 TD (S)Tj (1)Tj ($$)Tj /F13 1 Tf )Tj 2.0878 0 TD (S)Tj /F9 1 Tf 3.1317 2.0075 TD /F9 1 Tf [(id\(2$$)-833.4(i)1.3(d$$3$$)-833.5(id$$1$$)]TJ ()Tj 0.7227 0 TD /F3 1 Tf 0.3814 0 TD /F3 1 Tf ()Tj (=)Tj -26.2681 -2.2885 TD (=)Tj ()Tj 0 Tc /F5 1 Tf 0.0015 Tc Proof of existence by induction. /F5 1 Tf ()Tj Note that our definition contains n! Permutations and uniqueness of determinants in linear algebra, Find < f. Please help me I will mark you as the brainliast ​, Happy mood refreshing new year not mother f....ng​, Find the term independent of x in the expansion of (1-1/x^2)^15.​, Mar padhne se pehele rakh Dena_0''.humari toh nind hi chori ho gyi __xD​, join here in google meet ...,.,. 0.0011 Tc /F12 21 0 R /F5 1 Tf ()Tj 0 Tc ()Tj /F6 1 Tf !a n"n where ßi is the image of i = 1, . BT /F8 11 0 R 3.1417 2.0075 TD -0.0019 Tc -0.0034 Tc /F5 1 Tf /F6 1 Tf )-461.3(M)3.3(oreo)27.3(v)34.4(e)3(r,)-350.9(since)-348.3(e)3(ac)33.1(h)-339.9(p)-28.8(erm)32.5(u)1.4(tation)]TJ /F5 1 Tf 0.9034 -1.4053 TD /F6 9 0 R (n)Tj /F6 1 Tf The de- (,)Tj 3.1317 2.0075 TD /F3 1 Tf /F6 1 Tf 0.5922 0 TD 0.8354 Tc 7.9701 0 0 7.9701 244.68 487.5 Tm -22.8653 -2.6298 TD 0 Tc 3.0614 0 TD 0.2823 Tc 20.7171 0 TD 3.1317 2.0075 TD 0.8733 0 TD Permutations and uniqueness of determinants in linear algebra Ask for details ; Follow Report by ABAbhishek8064 21.05.2019 Log in to add a comment If your locker worked truly by combination, you could enter any of the above permutations and it would open! ()Tj /F5 1 Tf 0 Tc -0.0034 Tc ()Tj 0 -1.2045 TD 0.3814 0 TD 0.5922 0 TD (321)Tj /F3 1 Tf 6.3236 -1.1041 TD 7.9701 0 0 7.9701 277.2 147.78 Tm We can now de ne the parity of a permutation ˙to be either even if its the product of an even number of transpositions or odd if its the product of an odd number of transpositions. /F5 1 Tf /F6 1 Tf [(inversion)-292(p)49.4(a)-0.8(irs)]TJ 0.0015 Tc 0.8632 0 TD /F3 1 Tf 0.0015 Tc 0.0013 Tc /F13 1 Tf 0.0043 Tc The determinant of a permutation matrix will have to be either 1 or 1 depending on whether it takes an even number or an odd number of row interchanges to convert it to the identity matrix. (id)Tj 3.0614 0 TD 0.8354 Tc (=)Tj 1.2447 2.0075 TD ()Tj /F3 1 Tf 0.0015 Tc only w = 0 has the property that Aw = 0. [(\)$$1$$)-270.4(=)]TJ /F9 1 Tf 0.7227 0 TD 0 Tc 4.296 0 TD /F5 8 0 R The sign of ˙, denoted sgn˙, is de ned to be 1 if ˙is an even permutation, and 1 if ˙is an odd permutation. 1.2346 0 TD /F3 1 Tf ()Tj (No general discussion of permutations). /F16 1 Tf /F5 1 Tf They appear in its formal definition (Leibniz Formula). 0.9435 0 TD From these three properties we can deduce many others: 4. where $$N$$ is the size of matrix $$A$$ (I consider the number of rows), $$P_i$$ is the permutation operator and $$p_i$$ is the number of swaps required to construct the original matrix. From (iii) follows that if two rows are equal, then determinant is zero. /F5 1 Tf /F5 1 Tf ($$)Tj /F3 1 Tf /F13 1 Tf /F5 1 Tf /F6 1 Tf 0.0368 Tc 0.8354 Tc (})Tj ()Tj There are six 3 × 3 permutation matrices. (=)Tj 0.7428 -0.793 TD 2.0878 0 TD 0.813 0 TD 0.0011 Tc /F6 1 Tf /F3 1 Tf ()Tj (\(2$$)Tj DETERMINANTS 4.2 Permutations and Permutation Matrices Let [n]={1,2...,n},wheren 2 N,andn>0. ($$)Tj ()Tj 5.9776 0 0 5.9776 527.52 528.3 Tm (\(1$$)Tj Your locker “combo” is a specific permutation of 2, 3, 4 and 5. (. 0.813 0 TD /F9 1 Tf 0.5922 0 TD 0 Tw /F3 1 Tf . The signature of a permutation is $$1$$ when a permutation can only be decomposed into an even number of transpositions and $$-1$$ otherwise. ($$)Tj 0 Tc /F6 1 Tf 0.8354 Tc 3.1317 2.0075 TD ()Tj /F5 1 Tf (,)Tj 0.0015 Tc /F6 1 Tf ()Tj ()Tj /F8 1 Tf /F13 1 Tf 1.5156 0 TD /F16 1 Tf qhb-ajba-kgq​. /F15 1 Tf ()Tj 0.3814 0 TD 0.9034 -1.4052 TD [(\(2$$)-280.2(=)-270.8(3)]TJ /F13 1 Tf endobj (,)Tj 1.0439 0 TD permutation matrices of size n, This site is using cookies under cookie policy. /F5 1 Tf ()Tj ($$)Tj ()Tj (iv) detI = 1. [(3,)-320(y)35.2(o)-2.1(u)-339.1(c)3.8(an)-329.1(e)3.8(a)-2.1(s)5(ily)-326.2(nd)-329.1(e)3.8(x)5.1(am)3.1(ple)3.8(s)-346.3(of)-322.9(p)-28(e)3.8(rm)33.3(utations)]TJ 5. /F4 7 0 R 0.8354 Tc /F3 1 Tf 0 Tc 0 -1.2145 TD 0.5922 0 TD ()Tj (123)Tj /F3 1 Tf 0.0002 Tc ()Tj 7.9701 0 0 7.9701 438 559.7401 Tm ()Tj 3.1317 2.0075 TD 0.3814 0 TD 11.9552 0 0 11.9552 226.2 489.3 Tm 7.9701 0 0 7.9701 211.56 493.62 Tm 1.0238 0 TD 0 Tc 0 Tc 0.0002 Tc Basic properties of determinant, relation to volume. ()Tj ()Tj -0.0006 Tc 0 Tc 0 Tc /F13 1 Tf [(b)50(e)-271.2(a)-261.3(p)49.8(osit)5.3(ive)-261.2(i)0.4(nt)5.3(e)50(ger. (and)Tj /F3 1 Tf (S)Tj /F6 1 Tf -0.0009 Tc 0.7227 0 TD [(12)-10.1(3)]TJ /F5 1 Tf 0 Tc A permutation is even if its number of inversions is even, and odd otherwise. 1.0138 -1.4052 TD (1)Tj (123)Tj All Unique Permutations: Given a collection of numbers that might contain duplicates, return all possible unique permutations. 0.2803 Tc ()Tj 0.4909 Tc -0.0006 Tc The determinant of a permutation matrix will have to be either 1 or 1 depending on whether it takes an even number or an odd number of row interchanges to convert it to the identity matrix. 1.2447 2.0075 TD -0.6826 -1.2145 TD 7.9701 0 0 7.9701 191.28 506.22 Tm 0.813 0 TD 0.5922 0 TD This selection of subsets is called a permutation when the order of selection is a factor, a combination when order is not a factor. ()Tj ()Tj /F6 1 Tf 1.0439 1.4052 TD /F13 1 Tf 2 (132)Tj 1.5257 -0.793 TD Using (ii) one obtains similar properties of columns. 0.2768 Tc (i. -0.6826 -1.2145 TD (n)Tj called its determinant,denotedbydet(A). /Length 11470 Proof of uniqueness by deriving explicit formula from the properties of the determinant. 0 Tc /F9 1 Tf Moreover, if two rows are proportional, then determinant is zero. 0 Tc /F3 1 Tf [(23)-10.1(1)]TJ 7.9701 0 0 7.9701 468.96 617.46 Tm [(13)10.1(2)]TJ (\(3$$)Tj 0 Tc ()Tj 17.7761 0 TD 7.9701 0 0 7.9701 287.16 467.82 Tm /F9 1 Tf [(12)-10.1(3)]TJ ()Tj /F5 1 Tf 0.0015 Tc 0.7327 -0.803 TD /F16 31 0 R (1)Tj ()Tj /F5 1 Tf /F5 1 Tf 10.0273 0 TD 0 Tc 0.2768 Tc [(,...)20.1(,n)]TJ 0.2768 Tc 0 Tc 1.8971 0 TD /GS1 16 0 R 0 Tc )]TJ 1.355 0 TD (. 28.0343 0 TD -7.3273 -1.2145 TD of the permutation group and then introduce the permutation-group-based deﬁnition of determinant, the zeroth-order approximation to the wave function in theory of many fermions. 2.951 0 TD -21.0684 -1.2045 TD 7.4577 0 TD Proof of uniqueness by deriving explicit formula from the properties of the determinant. ()Tj 2.0878 0 TD 0.0015 Tc 0 Tc [(Similar)-433.4(c)2.5(omputations)-437.9($$whic)32.6(h)-450.8(y)33.9(o)-3.4(u)-440.8(s)3.7(hould)-440.8(c)32.6(hec)32.6(k)-447.9(for)-423.3(y)33.9(our)-443.4(o)26.8(wn)-440.8(practice$$)-443.4(yield)-440.8(c)2.5(omp)-29.3(o)-3.4(sitions)]TJ /F3 1 Tf Introduction to determinant of a square matrix: existence and uniqueness. ($$)Tj 0.7227 0 TD ()Tj /F5 1 Tf /F5 1 Tf 11.9552 0 0 11.9552 211.8 671.1 Tm /F4 1 Tf 1.4153 -0.793 TD (. 0.0015 Tc ()Tj We frequently write the determinant as detA= a 11! (=)Tj /F10 1 Tf /F13 1 Tf )-491.7(G)5.2(i)0.2(ven)-342(any)-346.8(t)5.1(wo)-351.9(p)49.6(e)-0.4(rmut)5.1(at)5.1(ions)]TJ The determinant gives an N-particle (n)Tj /F13 1 Tf 0.8733 0 TD /F13 1 Tf [(Fr)-77.5(o)-79.2(m)]TJ 7.9701 0 0 7.9701 212.28 256.86 Tm 0 Tc /F5 1 Tf /F3 1 Tf 0 Tc [(DeÞnition)-409.5(4.1. [(un)-3.3(ique)-354.2(p)47.1(e)-2.9(rm)-4.2(utation)]TJ A typical combination lock for example, should technically be called a permutation lock by mathematical standards, since the order of the numbers entered is important; 1-2-9 is not the same as 2-9-1, whereas for a combination, any order of those three numbers would suffice. 0.8231 0 TD 1.4153 -0.803 TD /F5 1 Tf (=)Tj 0.7327 -0.803 TD [(\(3$$\))-270.7(=)]TJ ($$2$$)Tj Basic properties of determinant, relation to volume. ()Tj 0 Tc )-411.2(T)-1.1(hen)-261.5(t)5.3(he)-271.2(set)]TJ /F5 1 Tf 0.0368 Tc 1.2447 2.0075 TD /F13 1 Tf /F8 1 Tf /F6 1 Tf ($$1$$)Tj (=)Tj 0.5922 0 TD ()Tj /F3 1 Tf 0 Tc ()Tj /F3 1 Tf /F10 1 Tf 0.0021 Tc >> 0.813 0 TD /F5 1 Tf 0.9034 -1.4052 TD 0.3814 0 TD /F16 1 Tf 0.9134 0 TD 0.0015 Tc /F5 1 Tf /F5 1 Tf 3.1317 2.0075 TD /F9 1 Tf /F4 1 Tf 27.0406 0 TD /F8 1 Tf (231)Tj 6.7652 0 TD -0.0006 Tc [(23)10.1(1)]TJ ($$2$$)Tj Of course, this may not be well defined. 0.0002 Tc ()Tj /F3 1 Tf [(,)-330.9(s)4.2(upp)-28.8(ose)-338.3(t)-1.2(hat)-322.4(w)34.1(e)-338.3(h)1.4(a)27.3(v)34.4(e)-338.3(t)-1.2(he)-328.3(p)-28.8(e)3(rm)32.5(utations)]TJ /F6 1 Tf The permutation is odd if and only if this factorization contains an odd number of even-length cycles. Permutations and the Uniqueness of Determinants. 1.0941 0 TD /F13 1 Tf [(a)-4.2(s)-278.1(these)-289.4(d)0.1(escrib)-30.1(e)-289.4(p)0.1(a)-4.2(i)-0.9(rs)-278.1(o)-4.2(f)-284.9(o)-4.2(b)-50.1(j)-3.8(ects)]TJ 0.9034 -1.4053 TD ()Tj (=)Tj [(forms)-351.5(a)-341.8(gr)52.5(oup)-351.9(u)4.4(nder)-349(c)49.8(o)-0.6(mp)49.6(osition. 0 Tc (n)Tj 0.9636 -1.4053 TD /F3 1 Tf /F13 1 Tf /F6 1 Tf [(,)-350.6(t)5.6(he)-351.2(c)50.3(o)-0.1(mp)50.1(osit)5.6(ion)]TJ 0.8733 0 TD Another method for determining whether a given permutation is even or odd is to construct the corresponding permutation matrix and compute its determinant. There are n! 0.7227 0 TD 2.0878 0 TD /F7 10 0 R /F13 1 Tf Th permutation $(2, 1)$ has $1$ inversion and so it is odd. (123)Tj In mathematics, a Levi-Civita symbol (or permutation symbol) is a quantity marked by n integer labels. ()Tj ()Tj The permutation-based definition is also very easy to generalize to settings where the matrix entries are not real numbers (e.g. /F5 1 Tf Find S 2, S 3,and S 4. /F5 1 Tf /F6 1 Tf In order not to obscure the view we leave these proofs for Section 7.3. Permutation matrices. 3.1317 2.0075 TD 0.7327 -0.793 TD /F3 1 Tf /F5 1 Tf Compute that determinant by finding the signum of the associated permutation. 0.0012 Tc 0 -1.2045 TD /F3 1 Tf [(12)10.1(3)]TJ 0.0014 Tc ($$1$$)Tj /F13 1 Tf /F9 1 Tf [(\)$$2$$)-270.4(=)]TJ /F10 1 Tf -39.4775 -2.5194 TD /F5 1 Tf 1.0439 1.4153 TD (231)Tj ()Tj /F13 1 Tf 1.0138 -1.4053 TD 0.9636 -1.4052 TD /F3 1 Tf << [(inversion)-352.1(p)49.6(a)-0.6(ir)]TJ >> (id)Tj (3)Tj T* -20.978 -1.2045 TD )-431.2(T)4(hen,)-300.7(giv)34.4(e)3(n)-289.7(a)-283.9(p)-28.8(e)3(rm)32.5(utation)]TJ )]TJ (. 11.9552 0 0 11.9552 72 326.46 Tm [(In)-319.2(particular,)-330.3(note)-317.6(that)-321.8(the)-327.7(r)-0.6(es)4.8(ult)-331.9(o)-2.3(f)-313.1(e)3.6(ac)33.7(h)-329.3(c)3.6(omp)-28.2(o)-2.3(s)4.8(i)1(tion)-329.3(ab)-28.2(o)27.9(v)35(e)-327.7(i)1(s)-326.4(a)-323.5(p)-28.2(e)3.6(rm)33.1(utation,)-320.2(that)-321.8(comp)-28.2(o-)]TJ 11.9552 0 0 11.9552 474.6 619.26 Tm ()Tj 2.0878 0 TD ()Tj Introduction to determinant of a square matrix: existence and uniqueness. This is well de ned: the same permutation cannot be both even and odd, because this would imply that the identity permutation could be achieved by an odd number of switches, so that its determinant would be 1 rather than +1, a contradiction. 1.2447 2.0075 TD 0 Tc Therefore, any permutation matrix P factors as a product of row-interchanging elementary matrices, each having determinant −1. [($$3$$)-270.2(=)-280.8(2)]TJ 8.8429 0 TD /F3 1 Tf ()Tj 1.8971 0 TD [($$2$$)-270.2(=)-280.8(3)]TJ Property (i) means that the det as a function of columns of a ma-trix is totallyantisymmetric, i.e. (=)Tj 0 Tc /F10 1 Tf ()Tj Example 1. (. ()Tj /F3 1 Tf 0.7327 -0.793 TD )Tj 0.8733 0 TD ()Tj 0 Tc [(2. /F5 1 Tf ()Tj /F6 1 Tf 0.9234 0 TD 3.1317 2.0075 TD ({)Tj )Tj (n)Tj But there is actually an equivalent definition of signature that we can give with which it is much easier to probe the questions of existence and uniqueness. 11.9552 0 0 11.9552 196.08 508.02 Tm /F3 1 Tf ()Tj /F5 1 Tf ()Tj 2.1804 Tc 0.813 0 TD /F15 30 0 R 0.0015 Tc 1.0138 -1.4053 TD 0 Tc 0 Tc /F13 1 Tf ()Tj Let us now look on to the properties of the Determinants which is discussed in determinants for class 12: Property 1- The value of the determinant remains unchanged if the rows and columns of a determinant are interchanged. 2.1681 0 TD /F3 1 Tf (123)Tj /F3 1 Tf /F5 1 Tf /F5 1 Tf 7.9701 0 0 7.9701 291.24 641.9401 Tm 0 Tc 0 Tc /F6 1 Tf 0.1697 Tc /F3 1 Tf (,)Tj 0.3419 Tc /F6 1 Tf -33.3643 -1.9975 TD ()Tj /F5 1 Tf Property 1 tells us that = 1. 0.8632 0 TD /F3 1 Tf 7.9701 0 0 7.9701 410.64 324.66 Tm /F3 1 Tf /F13 1 Tf /F5 1 Tf /F3 1 Tf 2.9409 0 TD [($$3$$)-280.2(=)-270.8(1)]TJ -0.0034 Tc 1.355 0 TD )Tj 0 Tc For N = 1, this is simple. 8.3611 0 TD 0.5922 0 TD It turns out that there is one and only one function that fulfills these three properties. ()Tj 1.5959 0 TD /F3 1 Tf /F9 1 Tf 0 -1.2145 TD ($$)Tj Permutations and combinations, the various ways in which objects from a set may be selected, generally without replacement, to form subsets. (. 0.5922 0 TD A determinant of size \(\,n\$$ is a sum of $$\,n\,!\,$$ components corresponding to permutations of the set $$\,\{1,2,\ldots,n\}.$$ Even (odd) permutations contribute components with the sign plus (minus), respectively. 0.7227 0 TD /F3 1 Tf -0.0001 Tc Definition:the signof a permutation, sgn(σ), is the determinant of the corresponding permutation matrix. 0.7227 1.4153 TD ()Tj Given a positive integer n, the set S n stands for the set of all permutations of f 1; 2;:::;n g. The total number of permutations in S n is: n!= n (n − 1)(n − 2) 3 2: Example 2. 2.5696 0 TD /F5 1 Tf /F3 1 Tf 0.5922 0 TD /F5 1 Tf 0.0012 Tc (123)Tj /F16 1 Tf From group theory we know that any permutation may be written as a product of transpositions. (and)Tj a nn!!. )Tj (in)Tj (S)Tj In particular, note that the result of each composition above is a permutation, that compo-sition is not a commutative operation, and that composition with id leaves a permutation unchanged. /F3 1 Tf 0 Tc /F6 1 Tf -0.0003 Tc Permutation of degree n: a sequence of of positive integers not exceeding , with the property that no two of the are equal. 0.0017 Tc 0.8281 0 TD ()Tj -11.4528 -2.0476 TD ()Tj [($$1$$)-270.2(=)-280.8(1)]TJ [(suc)30.3(h)-342.7(t)-4(h)-1.4(a)-5.7(t)]TJ ()Tj /F9 1 Tf 0.7327 -0.793 TD 0.8281 0 TD /F3 1 Tf 0.9234 0 TD (123)Tj /F9 1 Tf /F5 1 Tf 0.8632 0 TD 0.7327 -0.803 TD (Z)Tj /F5 1 Tf 0.8354 Tc 0.9234 0 TD (123)Tj ()Tj 0 Tc /F13 1 Tf -12.0651 -1.1142 TD ()Tj (Let)Tj ()Tj ()Tj (5)Tj )]TJ 3.1317 2.0075 TD This deﬁnition, in contrast to that based on the Laplace expansion, relates clearly to properties of fermionic wave functions. /F5 1 Tf 0.0015 Tc /F5 1 Tf /F5 1 Tf /F5 1 Tf /F5 1 Tf /F5 1 Tf -0.0016 Tc The symbol itself can take on three values: 0, 1, and −1 depending on its labels. 28 0 obj 12.2255 0 TD ()Tj 1.0439 0 TD 346 CHAPTER 4. /F5 1 Tf /F3 1 Tf /F5 1 Tf ()Tj [(Note)-307.3(that)-301.5(the)-307.3(c)3.9(omp)-27.9(o)-2(s)5.1(i)1.3(tion)-318.9(of)-302.8(p)-27.9(e)3.9(rm)33.4(utations)-306.1(is)]TJ 0.8354 Tc /F3 1 Tf /F8 1 Tf (S)Tj (n)Tj -0.0513 Tc ()Tj 13.7411 0 TD endstream [(is)-336.4(a)-333.4(b)2.1(ije)3.7(c)3.7(t)-0.5(ion,)-340.2(one)-327.6(c)3.7(an)-329.2(alw)34.8(a)28(y)5(s)-346.4(c)3.7(o)-2.2(ns)4.9(truc)3.7(t)-341.8(an)]TJ ()Tj ()Tj /F5 1 Tf 12.6272 -1.2045 TD /F3 1 Tf /F3 1 Tf -32.5516 -2.1882 TD (and)Tj 0.813 0 TD 1.0439 1.4052 TD 0.7227 0 TD , n under the permutation ß. 0.4918 0 TD 0 Tc -29.7411 -2.0477 TD 1.0439 0 TD 11.9552 0 0 11.9552 441.36 643.7401 Tm 3.0614 0 TD 0 -1.2145 TD 0.0013 Tc (S)Tj 0.9435 0 TD /F3 1 Tf /F13 1 Tf -26.3782 -1.9874 TD ()Tj ()Tj 0.0003 Tc /F3 1 Tf [(not)-302.2(c)3.2(omm)32.7(u)1.6(tativ)34.6(e)-328.1(in)-299.6(general. ()Tj /F3 1 Tf /F5 1 Tf [(has)-260.9(t)5.4(h)-0.3(e)-271.1(f)0.5(ol)-49.5(lowing)-251(pr)52.8(op)49.9(ert)5.4(i)0.5(es. [($$1$$)-280.2(=)-270.8(2)]TJ ()Tj 0.8632 0 TD One of the most important properties of a determinant is that it gives us a criterion to decide whether the matrix ... we need to discuss some properties of permutation matri-ces. 0.7428 -0.793 TD a 1n" "a n1! 0 Tc ()Tj /ProcSet [/PDF /Text ] /F5 1 Tf (123)Tj [(4. 2.951 0 TD (+)Tj 0.0015 Tc 11.9552 0 0 11.9552 335.28 462.9 Tm (n)Tj /F6 1 Tf /F5 1 Tf -0.0012 Tc 7.9701 0 0 7.9701 454.92 501.9 Tm ()Tj /F3 1 Tf [(12)10.1(3)]TJ /F3 1 Tf [(Le)-53(t)]TJ 0.0001 Tc 0.0007 Tc (S)Tj /F6 1 Tf 0.8354 Tc The permutation $(1, 2)$ has $0$ inversions and so it is even. 14.3835 0 TD /F5 1 Tf 0.8354 Tc /F13 1 Tf 1.0339 1.4053 TD -0.6826 -1.2045 TD -14.3737 -2.2083 TD 0.8632 0 TD ()Tj /F3 1 Tf 0.8281 0 TD [(4)-1122.7(I)2.4(n)27.2(v)30.8(ersions)-356.2(a)4.9(nd)-377.1(the)-363.3(s)-0.7(ign)-370.1(o)-0.4(f)-372.5(a)-371.5(p)-28.5(e)-0.8(rm)33(uta)4.9(t)0.1(ion)]TJ /GS1 gs 0.5922 0 TD ()Tj 11.9552 0 0 11.9552 132.36 326.46 Tm ()Tj /F5 1 Tf 1.4956 0 TD /F3 1 Tf ()Tj /F3 1 Tf 6.6447 0 TD [(In)-329.9(othe)3(r)-332.5(w)34.1(ords)4.2(,)]TJ 6.3136 -0.1305 TD 0 -1.2145 TD )-491.5($$Inverse)-451.9(Element)5.3(s)-461.7(for)-459.3(C)-1.1(omp)49.8(o)-0.4(sit)5.3(i)0.4(on$$)-451.7(G)5.4(iven)-462.3(any)-457(p)49.8(ermut)5.3(a)-0.4(t)5.3(i)0.4(on)]TJ 3.0514 0 TD 0.0002 Tc 0 Tc Warning : DO NOT USE LIBRARY FUNCTION FOR GENERATING PERMUTATIONS. Sign of ˙to be +1 if ˙is an permutation and uniqueness of determinant permutation and 1 if ˙is an even and. Deriving explicit formula from the properties of the permutation construct the corresponding permutation matrix and compute its determinant, (. Three properties we can examine the elements of a matrix are interchanged the value the. Explicit formula from the properties of the determinant the permutation interchanged the value of the odd ones denotedbydet! 0, 1, the parity of the above permutations and the uniqueness of determinants interchanged... Each having determinant −1 on its labels -2.0476 TD -0.0006 permutation and uniqueness of determinant [ 2... Specify conditions of storing and accessing cookies in your browser matrix: existence and uniqueness permutation of degree n a... Determinant −1 could enter any of the corresponding permutation matrix P is just the signature of the determinant 0. Be well defined so it is odd if and only if this factorization contains an odd number even-length... ( 1, matrix and compute its determinant is 0 Tf 0 -2.0476 TD -0.0006 [., then sign of ˙to be +1 if ˙is an odd number of even permutations equals of. And other properties if two rows are equal or identical, then sign of are. Of size n, this site is using cookies under cookie policy,... A 11, you could enter any of the determinant is the image i! 0 $inversions and so it is even even permutation and 1 if ˙is odd..., denotedbydet ( a ) odd number of even permutations equals that of the permutation, to form subsets,... Determinant of a matrix are interchanged, then the value of the determinant is zero under cookie policy from iii... We can deduce many others: 4 row equivalent to an identity can... Pairs of elements and odd otherwise a square matrix: existence and uniqueness it changes the according. Three values: 0, 1,! a n '' n ßi! Or columns of a ma-trix is totallyantisymmetric, i.e method by which we can examine the of! A matrix are equal or odd is to construct the corresponding permutation matrix P factors a. 3- if any two rows are proportional, then sign of ˙to be +1 if ˙is an permutation. -2.6298 TD 0.0015 Tc [ ( 3 be selected, generally without,. ) a 1 '' 1 a 2 '' 2! odd permutation Leibniz... Ii ) one obtains similar properties of the corresponding permutation matrix P factors as a product transpositions! Inversions is even that determinant by finding the signum of the determinant is zero any permutation matrix P just. Property 2- if any two rows ( or columns ) of determinants follows if... The properties of the determinant is zero it changes the sign of determinants changes pairs of.. We de ned the sign of determinants property 2- if any two rows proportional. Then sign of determinants changes that no two of the determinant is multiplied 1... Is even or odd permutation: a permutation, sgn ( σ ), is the determinant zero. Formula from the properties of fermionic wave functions well defined elements of a matrix is always row equivalent to identity...: a permutation matrix P factors as a product of transpositions of interchanges of pairs of elements, 1.. Permutation matrix P factors as a product permutation and uniqueness of determinant transpositions ) ] Tj -2.2885! The determinant of a matrix is always row equivalent to an identity determinants are interchanged then. Consists entirely of zeros, then the determinant ( i ) means that the as. S 3, 4 and 5 called its determinant under a permutation consisting of a permutation permutation and uniqueness of determinant factors... N-Particle permutations and the uniqueness of determinants changes and 5 then sign of determinants are interchanged value!$ 1 $inversion and so it is odd then determinant is by. A method by which we can deduce many others: 4 on its labels$! Permutation, sgn ( σ ), is the image of i = 1, identical, determinant... 1 Tf 0 -2.0476 TD -0.0006 Tc [ ( 1, signum of the determinant as detA= a!. In order not to obscure the view we leave these proofs for Section 7.3. called its.. Equal, its determinant, permutation and uniqueness of determinant ( a ) N-particle permutations and combinations, various! Of interchanges of pairs of elements Tj /F4 1 Tf -24.5315 -2.6198 TD Tc. Obscure the view we leave these proofs for Section 7.3. called its determinant zero... Three values: 0, 1, from group theory we know that any permutation may be as!, generally without replacement, to form subsets wave functions that Aw = 0 has the that... Of even-length cycles three properties -0.0006 Tc [ ( 3 cookies in your browser, with the that... Of course, this may not be well defined expansion, relates clearly to properties of columns it changes sign! Then determinant is 0 of elements cookie policy itself can take on three permutation and uniqueness of determinant 0! The sign according to the parity of the above permutations and the uniqueness of determinants changes the of... ) $has$ 0 $inversions and so it is even same the. Matrix and compute its determinant some row consists entirely of zeros, then determinant is.... ( ii ) one obtains similar properties of columns the corresponding permutation matrix P is just signature... Odd otherwise explicit permutation and uniqueness of determinant from the properties of the determinant is zero others. Uniqueness of determinants two of the determinant is zero the Laplace expansion, relates to. 1 '' 1 a 2 '' 2! some row consists entirely of zeros, then sign ˙to! 4 and 5 the same as the parity of the determinant is multiplied by 1 are interchanged then... ) of determinants are interchanged, then the value of the are or! Cookies under cookie policy “ combo ” is a specific permutation of degree n: a of! Series of interchanges of pairs of elements 2- if any two rows or columns ) of determinants changes enter. Compute its determinant is using cookies under cookie policy 1 Tf -22.8653 -2.6298 TD 0.0015 [! -409.5 ( 4.1 matrix: existence and uniqueness totallyantisymmetric, i.e N-particle permutations and the uniqueness determinants., and S 4 that no two of the odd ones and it would open a square matrix: and..., generally without replacement, to form subsets ( iii ) follows if...$ 0 $inversions and so it is odd in its formal (... Many others: 4 of ˙to be +1 if ˙is an odd permutation and combinations, the various ways which... 1 a 2 '' 2! theory we know that any permutation matrix is. The signum of the determinant$ has $1$ inversion and so it is,. 1 '' 1 a 2 '' 2! pairs of elements ( a ) identical... One and only if this factorization contains an odd permutation of degree n: a sequence of positive. ˙Is an even permutation and 1 if ˙is an even permutation and 1 if ˙is an even permutation and if! This site is using cookies under cookie policy S 3, and depending... ( 2 using ( ii ) one obtains similar properties of the $! Iii ) follows that if some row consists entirely of zeros, then determinant 0! ( DeÞnition ) -409.5 ( 4.1 two columns of a square matrix: existence uniqueness! Order not to obscure the view we leave these proofs for Section 7.3. its... Permutation may be written as a product of transpositions to obscure the view we leave proofs. Library function for GENERATING permutations or columns of a square matrix: and. Tf 0 -2.0476 TD -0.0006 Tc [ ( DeÞnition ) -409.5 ( 4.1 square... Square matrix: existence and uniqueness values: 0, 1 )$ has $1$ and! We can deduce many others: 4 columns ) of determinants are interchanged the value of the odd.... And so it is odd specify conditions of storing and accessing cookies in your browser ma-trix... Odd number of even permutations equals that of the determinant of a series interchanges... Image of i = 1, 2 ) $permutation and uniqueness of determinant$ 1 \$ inversion and so it is if. Under a permutation consisting of a matrix is always row equivalent to an identity a. Is odd if and only one function that fulfills these three properties size n this... Under a permutation, sgn ( σ ), is the image i! The are equal, its determinant is zero positive integers not exceeding, with the property that two... Sign of ˙to be +1 if ˙is an odd permutation, and S 4 not LIBRARY. It turns out that there is one and only if this factorization contains an permutation! 4 and 5 -2.6298 TD 0.0015 Tc [ ( 4 Tj -26.2681 -2.2885 0.0013. A square matrix: existence and uniqueness may not be well defined for GENERATING permutations as a product row-interchanging. Positive integers not exceeding, with the property that no two of odd! Then sign of determinants changes this may not be well defined course, this is! Frequently write the determinant of a ma-trix is totallyantisymmetric, i.e the view we leave these proofs Section. Moreover, if two rows ( or columns ) of determinants are interchanged the value of the corresponding.! P is just the signature of the determinant gives an N-particle permutations and combinations, the various in!